Creating sustainability by synthetic biology – Recombinant production of designer surfactants
Rhamnolipids are biosurfactants with an enormous potential to replace or complement classic surfactants in industrial applications. They consist of one or two L-rhamnose residues linked to one or two 3-hydroxyfatty acids of various chain lengths, which can also contain unsaturated carbon-carbon bonds, yielding a wide variety of different structures each with its specific physico-chemical properties. Since different applications of surfactants require specific tenside characteristics related to surface tension reduction, emulsification, and foaming etc., rhamnolipids represent a platform molecule which harbors an enormous potential to adopt tailor-made properties to meet a huge variety of demands of surfactants for food-, healthcare-, and biotechnological applications. We develop novel technologies to synthesize tailor-made rhamnolipids based on the biotechnological use of different enzymes responsible for rhamnolipid biosynthesis originating from different naturally rhamnolipid-producing microorganism. Furthermore, we aim on future strategies to determine the number of L-rhamnose and 3-hydroxyfatty acids as well as their specific chain lengths and unsaturations to produce customized rhamnolipids perfectly tuned for every application.
The use of still unusual carbon sources (e. g. sugars and sugar mixtures from lignocellulose) fort he production of bioproucts is a current research topic).
Projects have are and have been funded by „Fachagentur Nachwachsende Rohstoffe“, „Deutsche Bundesstiftung Umwelt“ and „Forschungsprogramm Bioökonomie Baden-Württemberg“ (https://biooekonomie-bw.uni-hohenheim.de/startseite).
The rhamnolipid project has received the „Forschungspreis NRW - Zukunft erfinden 2014“ in the category „transfer“ and was nominated in the category „Lifesciences“) (https://www.pressebox.de/inaktiv/provendis-gmbh/Roter-Teppich-fuer-NRW-Erfindungen-PROvendis-laedt-zur-Preisverleihung-des-HochschulWettbewerbs-ZukunftErfindenNRW/boxid/675190
Our selected publications in the field:
Wang Y, Horlamus F, Henkel M, et al. Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy. 2019; 11: 249–259.
Horlamus F, Wittgens A, Noll P, et al. One-step bioconversion of hemicellulose polymers to rhamnolipids with Cellvibrio japonicus: A proof-of-concept for a potential host strain in future bioeconomy. GCB Bioenergy. 2019; 11: 260–268.
Wang, Y., Kubiczek, D., Horlamus, F., Raber, H.F., Hennecke, T., Einfalt, D., Henkel, M., Hausmann, R., Wittgens, A. and Rosenau, F. (2021), Bioconversion of lignocellulosic ‘waste’ to high-value food proteins: Recombinant production of bovine and human αS1-casein based on wheat straw lignocellulose. GCB Bioenergy, 13: 640-655.
Widberger J, Wittgens A, Klaunig S, Krämer M, Kissmann AK, Höfele F, Baur T,
Weil T, Henkel M, Hausmann R, Bengelsdorf FR, Eikmanns BJ, Dürre P, Rosenau F.
Recombinant Production of <i>Pseudomonas aeruginosa</i> Rhamnolipids in <i>P.
putida</i> KT2440 on <i>Acetobacterium woodii</i> Cultures Grown Chemo-
Autotrophically with Carbon Dioxide and Hydrogen. Microorganisms. 2024 Mar
6;12(3):529. doi: 10.3390/microorganisms12030529. PMID: 38543580; PMCID:
PMC10972445.
Stark C, Münßinger S, Rosenau F, Eikmanns BJ, Schwentner A. The Potential of
Sequential Fermentations in Converting C1 Substrates to Higher-Value Products.
Front Microbiol. 2022 Jun 3;13:907577. doi: 10.3389/fmicb.2022.907577. PMID:
35722332; PMCID: PMC9204031.
Wittgens A, Rosenau F. Heterologous Rhamnolipid Biosynthesis: Advantages,
Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids. Front
Bioeng Biotechnol. 2020 Oct 22;8:594010. doi: 10.3389/fbioe.2020.594010. PMID:
33195161; PMCID: PMC7642724.
Bator I, Wittgens A, Rosenau F, Tiso T, Blank LM. Comparison of Three Xylose
Pathways in <i>Pseudomonas putida</i> KT2440 for the Synthesis of Valuable
Products. Front Bioeng Biotechnol. 2020 Jan 17;7:480. doi:
10.3389/fbioe.2019.00480. PMID: 32010683; PMCID: PMC6978631.
Arnold S, Henkel M, Wanger J, Wittgens A, Rosenau F, Hausmann R. Heterologous
rhamnolipid biosynthesis by P. putida KT2440 on bio-oil derived small organic
acids and fractions. AMB Express. 2019 May 31;9(1):80. doi:
10.1186/s13568-019-0804-7. PMID: 31152276; PMCID: PMC6544668.
6: Wittgens A, Rosenau F. On the road towards tailor-made rhamnolipids: current
state and perspectives. Appl Microbiol Biotechnol. 2018 Oct;102(19):8175-8185.
doi: 10.1007/s00253-018-9240-x. Epub 2018 Jul 21. PMID: 30032436.
7: Wittgens A, Santiago-Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R,
Hofmann D, Wilhelm S, Jaeger KE, Rosenau F. Heterologous production of long-
chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward
to tailor-made rhamnolipids. Appl Microbiol Biotechnol. 2018
Feb;102(3):1229-1239. doi: 10.1007/s00253-017-8702-x. Epub 2017 Dec 20. PMID:
29264775.
8: Tiso T, Zauter R, Tulke H, Leuchtle B, Li WJ, Behrens B, Wittgens A, Rosenau
F, Hayen H, Blank LM. Designer rhamnolipids by reduction of congener diversity:
production and characterization. Microb Cell Fact. 2017 Dec 14;16(1):225. doi:
10.1186/s12934-017-0838-y. PMID: 29241456; PMCID: PMC5729600.
9: Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D,
Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F. Novel
insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl
Microbiol Biotechnol. 2017 Apr;101(7):2865-2878. doi: 10.1007/s00253-016-8041-3.
Epub 2016 Dec 17. PMID: 27988798; PMCID: PMC5352749.
10: Beuker J, Barth T, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R.
High titer heterologous rhamnolipid production. AMB Express. 2016 Dec;6(1):124.
doi: 10.1186/s13568-016-0298-5. Epub 2016 Dec 12. PMID: 27957724; PMCID:
PMC5153395.
11: Tiso T, Sabelhaus P, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM.
Creating metabolic demand as an engineering strategy in <i>Pseudomonas
putida</i> - Rhamnolipid synthesis as an example. Metab Eng Commun. 2016 Aug
8;3:234-244. doi: 10.1016/j.meteno.2016.08.002. PMID: 29142825; PMCID:
PMC5678820.
12: Thies S, Rausch SC, Kovacic F, Schmidt-Thaler A, Wilhelm S, Rosenau F,
Daniel R, Streit W, Pietruszka J, Jaeger KE. Metagenomic discovery of novel
enzymes and biosurfactants in a slaughterhouse biofilm microbial community. Sci
Rep. 2016 Jun 8;6:27035. doi: 10.1038/srep27035. PMID: 27271534; PMCID:
PMC4897644.
13: Beuker J, Steier A, Wittgens A, Rosenau F, Henkel M, Hausmann R. Integrated
foam fractionation for heterologous rhamnolipid production with recombinant
Pseudomonas putida in a bioreactor. AMB Express. 2016 Mar;6(1):11. doi:
10.1186/s13568-016-0183-2. Epub 2016 Feb 9. PMID: 26860613; PMCID: PMC4747948.
14: Thies S, Santiago-Schübel B, Kovačić F, Rosenau F, Hausmann R, Jaeger KE.
Heterologous production of the lipopeptide biosurfactant serrawettin W1 in
Escherichia coli. J Biotechnol. 2014 Jul 10;181:27-30. doi:
10.1016/j.jbiotec.2014.03.037. Epub 2014 Apr 13. PMID: 24732103.
15: Loeschcke A, Markert A, Wilhelm S, Wirtz A, Rosenau F, Jaeger KE, Drepper T.
TREX: a universal tool for the transfer and expression of biosynthetic pathways
in bacteria. ACS Synth Biol. 2013 Jan 18;2(1):22-33. doi: 10.1021/sb3000657.
Epub 2012 Oct 17. PMID: 23656323.
16: Troeschel SC, Thies S, Link O, Real CI, Knops K, Wilhelm S, Rosenau F,
Jaeger KE. Novel broad host range shuttle vectors for expression in Escherichia
coli, Bacillus subtilis and Pseudomonas putida. J Biotechnol. 2012 Oct
15;161(2):71-9. doi: 10.1016/j.jbiotec.2012.02.020. Epub 2012 Mar 7. PMID:
22440389.
17: Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerich J, Müller C, Wichmann R,
Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM. Growth
independent rhamnolipid production from glucose using the non-pathogenic
Pseudomonas putida KT2440. Microb Cell Fact. 2011 Oct 17;10:80. doi:
10.1186/1475-2859-10-80. PMID: 21999513; PMCID: PMC3258213.
18: Rosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert
M, Jahn D, Wilhelm S, Jaeger KE. Lipase LipC affects motility, biofilm formation
and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2010
Aug 1;309(1):25-34. doi: 10.1111/j.1574-6968.2010.02017.x. Epub 2010 May 17.
PMID: 20546309.