Partielle Differentialgleichungen
·¡¾±²Ô´Úü³ó°ù³Ü²Ô²µ
Partial differential equations (PDEs) are fundamental to the modeling of natural phenomena arising in various fields of science such as heat conduction, elasticity, electrodynamics, fluid flow, chemical reaction, quantum mechanics or Black-Scholes option pricing model in mathematical finance... Study on PDEs therefore plays an important role in applications concerning many different fields.
The aim of this course is to give an introduction to the theory of PDEs. We first recall some necessary basic tools. Then, a detailed study on some important PDEs, namely Laplace's equation, the heat equation and the wave equation are given. These serve as archetypes and motivation for the further study on the more complicated PDEs.
Betreuung
- Dozent: Prof. Dr. Friedmar Schulz
- ܲú³Ü²Ô²µ²õ±ô±ð¾±³Ù±ð°ù: Dr. Kim-Hang Le
Umfang
- ETCS-Punkte: 9
- 4+2 SWS
±Ê°ùü´Ú³Ü²Ô²µ
Die Vergabe der Leistungspunkte erfolgt aufgrund des Bestehens einer schriftlichen ±Ê°ùü´Ú³Ü²Ô²µ am Ende des Semesters.
Die Anmeldung zu dieser ±Ê°ùü´Ú³Ü²Ô²µ setzt keinen Leistungsnachweis voraus.
Wir bieten zwei ±Ê°ùü´Ú³Ü²Ô²µstage an, den ersten im Anschluss an das Sommersemester und den zweiten vor Beginn des Wintersemesters:
- Saturday, 22.07.2017 9:30-11:30, N24/H11
- Monday, 09.10.2017 9:30-11:30, N24/H11
Termine und Räume
- Vorlesung (ab 18.04.17):
- Montag 12:00–14:00: He18, 120
- Tuesday 14:00–16:00: He18, E60
- Übung (ab 21.04.17):
- Friday 10:00–12:00: He18, E20
Bitte melden Sie sich in an.
ܲú³Ü²Ô²µ²ú±ôä³Ù³Ù±ð°ù
Literatur
[1] L. Evans, Partial Differential Equations, American Mathematical Society
[2] M. Renardy, R. Rogers, An Introduction to Partial Differential Equations, Springer
[3] F. Sauvigny, Partielle Differentialgleichungen der Geometrie und der Physik, Springer