Îçҹ̽»¨

Manuel Schlierf

Research interests
  • Variational study of bending energies of networks of curves and junction clusters of surfaces
  • Free boundary problems for Willmore-type energies of curves and surfaces
  • Willmore flows of axisymmetric surfaces: new variants, analysis of singularities
  • Gradient flow approaches to the Canham-Helfrich model

Publications and Preprints

|

[7] A. Dall'Acqua and M. Schlierf. The length-preserving elastic flow with free boundary on hypersurfaces in $\mathbb{R}^n$. (2025) ()

[6] A. Dall'Acqua, M. Müller, F. Rupp, and M. Schlierf. Dimension reduction for Willmore flows of tori: fixed conformal class and analysis of singularities. (2025) ()

[5] F. Rupp, C. Scharrer and M. Schlierf. Gradient flow dynamics for cell membranes in the Canham-Helfrich model ()

[4] M. Schlierf. Spontaneous curvature effects of the Helfrich flow: Singularities and convergence ( | )

[3] M. Schlierf. Global existence for the Willmore flow with boundary via Simon's Li-Yau inequality ( | )

[2] M. Schlierf. Singularities of the hyperbolic elastic flow: Convergence, quantization and blow-ups ( | )

[1] M. Schlierf. On the convergence of the Willmore flow with Dirichlet boundary conditions ( | )

 

Teaching

Education

  • Mathematics and Management (B.Sc.) - Îçҹ̽»¨ (2016-2019)
  • Mathematics (M.Sc.) - Îçҹ̽»¨ (2019 - 2021)
  • Mathematics (M.Sc.) - Syracuse University (2020 - 2021)
Office hours

By appointment.

Contact details

Personal Webpage:

Address:  Helmholtzstraße 18
Room: E.24
Phone: 0731/ 50-23523
E-mail:  manuel.schlierf(at)uni-ulm.de

Ph.D. student of Anna Dall'Acqua

from the Studienstiftung des Deutschen Volkes