Financial Mathematics I
Content
This course covers the fundamental principles and techniques of Financial Mathematics in discrete- and continuous-time models.
Specific topics are
- Financial market models in discrete time: arbitrage freeness and completeness
- Conditional expectation and discrete time martingales
- Valuation of European, American and path-dependent options
- Foundations of continuous time market models and of the Black-Scholes model
- Interest rate models and derivatives
- Risk measures
- Portfolio optimisation and CAPM
More information is given in Moodle. Please inscribe there for the course.
Literature
A list of reference books would cover the following works:
- A. Irle, Finanzmathematik: Die Bewertung von Derivaten, Vieweg + Teubner, 2012.
- N.H.Bingham & R.Kiesel, Risk Neutral Valuation, 2nd ed., Springer, 2004.
- H. Föllmer & A. Schied, Stochastic Finance: An introduction in discrete time, de Gruyter, 2004.
- P.K. Koch & S. Merino, Mathematical Finance and Probability: A Discrete Introduction, Springer, 2013.
- M. Musiela & M. Rutkowski, Martingale methods in financial modelling, 2nd ed., Springer, 2004.
- S. Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer, 2004.
- S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.
Lecturer
Class teacher
Time and Venue
Teaching will take place online using the university's moodle system. Further information is available on the system.
Type
MSc. Finance: compulsory course
Bachelor/Master Mathematik: Wahlpflichtmodul im Bereich Angewandte Mathematik
Bachelor WiMa: Wahlpflichtmodul im Bereich SOF
Master WiMa: Wahlpflichtmodul im Bereich SOF
Prerequisites
- Analysis I+II
- Lineare Algebra I+II
- Stochastik I
- Elementary Probability, Statistics and Measure Theory or
- Introduction to Measure Theoretic Probability (can be attended in the same winter term, more information can be found here).