# Statistik 2 - Blatt 11 - Aufgabe 3 # Daten einlesen daten <- read.table("C:\\challenger.txt", header = T) # a) Logit-Modell logitModell <- glm(daten$Ausfall ~ daten$Temperatur, family = binomial(link = logit)) summary(logitModell) # b) Prognose der Ausfallwahrscheinlichkeit bei 31 °F beta0 <- as.vector(coef(logitModell))[1] beta1 <- as.vector(coef(logitModell))[2] print(exp(beta0 + beta1 * 31) / (1 + exp(beta0 + beta1 * 31))) # c) Probit-Modell probitModell <- glm(daten$Ausfall ~ daten$Temperatur, family = binomial(link = probit)) summary(probitModell) # Prognose der Ausfallwahrscheinlichkeit bei 31 °F beta2 <- as.vector(coef(probitModell))[1] beta3 <- as.vector(coef(probitModell))[2] print(pnorm(beta2 + beta3 * 31)) # d) Kurven plotten s <- rep(0, 1000) min <- 29 max <- 91 for (i in 1:1000) { s[i] <- min + (i - 1) * (max - min) / 1000 } w1 <- exp(beta0 + beta1 * s) / (1 + exp(beta0 + beta1 * s)) plot(s, w1, xlab = "Temperatur in °F", ylab = "Ausfallwahrscheinlichkeit", type = "l") w2 <- pnorm(beta2 + beta3 * s) lines(s, w2, lty = 2) points(daten$Temperatur, daten$Ausfall, pch = 8) legend(x = 30, y = 0.2, legend = c("Logit-Modell", "Probit-Modell"), lty = c(1, 2))