rm(list=ls(all=T)) # Daten einlesen data_w <- scan("D://Uebungen//2010_Sommersemester//Wirtschaftsstatistik_SS_10//Blatt 4//einkommen_w.txt") data_m <- scan("D://Uebungen//2010_Sommersemester//Wirtschaftsstatistik_SS_10//Blatt 4//einkommen_m.txt") # Lage- und Streuungsmasszahlen summary(data_w) summary(data_m) sd(data_w) sd(data_m) length(data_w[data_w<2.657]) / length(data_w) length(data_m[data_m<2.657]) / length(data_m) # Lorenzkurven # Frauen # x-Koordinaten der Lorenzkurve u_w <- seq(1/length(data_w), 1, 1/length(data_w)) # y-Koordinaten der Lorenzkurve v_w <- rep(0, length(data_w)) for (j in 1:length(data_w)) { v_w[j] = sum(data_w[1:j]) / sum(data_w) } # Männer # x-Koordinaten der Lorenzkurve u_m <- seq(1/length(data_m), 1, 1/length(data_m)) # y-Koordinaten der Lorenzkurve v_m <- rep(0, length(data_m)) for (j in 1:length(data_m)) { v_m[j] = sum(data_m[1:j]) / sum(data_m) } # plotten plot(u_w, v_w, type = "l", xlab = "u", ylab = "v") lines(u_m, v_m, type = "l", lty = 2) legend(x = 0.1, y = 0.9, legend = c("Männer", "Frauen"), lty = c(2, 1)) # Gini-Koeffizienten # Frauen p_w <- data_w / sum(data_w) gamma_w <- (2*sum(seq(1:length(data_w))*p_w) - (length(data_w)+1)) / length(data_w) gamma_w # Männer p_m <- data_m / sum(data_m) gamma_m <- (2*sum(seq(1:length(data_m))*p_m) - (length(data_m)+1)) / length(data_m) gamma_m # Histogramme par(mfrow = c(2, 2)) hist(data_w, freq = FALSE) hist(data_m, freq = FALSE) hist(data_w[data_w<10], freq = FALSE) hist(data_m[data_m<10], freq = FALSE) # Kontingenztafel relative Häufigkeit Einkommen < 2000 vs. Einkommen >= 2000 length(data_w[data_w<2]) / (length(data_w) + length(data_m)) length(data_w[data_w>=2]) / (length(data_w) + length(data_m)) length(data_m[data_m<2]) / (length(data_w) + length(data_m)) length(data_m[data_m>=2]) / (length(data_w) + length(data_m))