\documentclass[fleqn,reqno,11pt,a4paper, openany]{amsbook} \usepackage{amssymb, amsmath, amsthm} \usepackage[a4paper,left=30mm,right=30mm,top=30mm,bottom=30mm,marginpar=20mm]{geometry} \usepackage{mathtools} \mathtoolsset{showonlyrefs}% Only references lables that are then used. No need for equation* for example. \usepackage{MnSymbol} %\usepackage{showlabels} \usepackage{esint} \usepackage{wasysym} \usepackage{graphicx} \usepackage{color} \usepackage{epsfig} \usepackage{nicefrac} \usepackage{cite} \usepackage{url} \usepackage{enumerate} \usepackage{mathrsfs} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=black, citecolor=black, urlcolor=black]{hyperref} %\usepackage[utf8]{inputenc} % this is needed for umlauts %\usepackage[ngerman]{babel} % this is needed for umlauts %\usepackage[iso-8859-7]{inputenc} \usepackage[T1]{fontenc} %\newcommand{\textgreek}[1]{\begingroup\fontencoding{LGR}\selectfont#1\endgroup} %\setcounter{chapter}{4} \numberwithin{equation}{chapter} \numberwithin{section}{chapter} \numberwithin{subsection}{section} % ---------------------------------------------------------------- \vfuzz2pt % Don't report over-full v-boxes if over-edge is small \hfuzz2pt % Don't report over-full h-boxes if over-edge is small % THEOREMS ------------------------------------------------------- \theoremstyle{plain} \newtheorem{thm}{Theorem}[chapter] \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{claim}[thm]{Claim} \theoremstyle{definition} \newtheorem{defn}[thm]{Definition} \theoremstyle{remark} \newtheorem{rem}[thm]{Remark} \newtheorem{satz}[thm]{Satz} \newtheorem{kor}[thm]{Korollar} \newtheorem{bem}[thm]{Bemerkung} %\newtheorem*{beisp*}{Beispiel}[chapter] \newtheorem{beisp}[thm]{Beispiel} \newcommand{\at}{\makeatletter @\makeatother} % MATH ----------------------------------------------------------- %\newcommand*{\spir}[1]{\raisebox{2.5ex}{\scalebox{1}[-1]{`}}#1} \newcommand{\norm}[1]{\left\Vert#1\right\Vert} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\R}{\mathbb R} \newcommand{\K}{\mathbb K} \newcommand{\N}{\mathbb N} \newcommand{\Q}{\mathbb Q} \newcommand{\C}{\mathbb C} \newcommand{\s}{\mathbb S} \newcommand{\B}{\mathbb B} \newcommand{\Z}{\mathbb Z} \newcommand{\T}{\mathbb T} \newcommand{\e}{\mathrm e} \newcommand{\ii}{\mathrm i} \newcommand{\eps}{\varepsilon} \newcommand{\To}{\longrightarrow} \newcommand{\BX}{\mathbf{B}(X)} \newcommand{\A}{\mathcal{A}} \newcommand{\proofstep}[1]{\textit{#1}} \newcommand{\diverg}{\operatorname{div}} \newcommand{\rot}{\operatorname{rot}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\modu}{\operatorname{mod}} \newcommand{\dd}{\;\mathrm{d}} \newcommand{\defeq}{\vcentcolon=} \newcommand{\eqdef}{=\vcentcolon} \newcommand{\diam}{\operatorname{diam}} % ---------------------------------------------------------------- \begin{document} %\selectlanguage{ngerman} %\bibliographystyle{plain} \title[CKN]{Navier-Stokes Seminar: Caffarelli-Kohn-Nirenberg Theory} \author{} \thispagestyle{empty} \begin{center} \huge{\bf Navier-Stokes Seminar: Caffarelli-Kohn-Nirenberg Theory}\\ \vspace{1cm} \Huge{{Insert name here}}\\ \huge{Universit\"at Ulm, Summer 2019}\\ \vspace{1cm} %\huge{Version as of 13/02/2019} \\ \end{center} %\newpage %\maketitle %\frontmatter %\mainmatter \chapter*{Preface} These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg Theory for the Navier-Stokes equations at the Universit\"at Ulm in the summer term of 2019. We mainly follow the \cite{CKNpaper} in a modern fashion. This work is aimed at enthusiastic Masters and PhD students. %Except for the first and the last chapter, the notes follow the excellent recent textbook~\cite{RRS}. Students are encouraged to consult further literature, such as the classical books~\cite{CF, Tem, lions}. %Except for the very end of the course, I chose to work exclusively on the three-dimensional torus such as to simplify the presentation. However all mentioned results from the first four chapters have a straightforward extension to the whole space $\R^3$, or to (sufficiently regular) bounded domains, which certainly represent the physically most relevant case. I would like to thank everyone taking the seminar for typing parts of these notes. Corrections and suggestions should be sent to \verb+jack.skipper@uni-ulm.de+. %\item Anschließend an die vorige Bemerkung ergibt sich aus Tippfehlern im Skript für Sie kein Anspruch, denselben Fehler Ihrerseits machen zu dürfen, z.B.~in einer Klausur.%\footnote{Quod licet Iovi, non licet bovi.} \thispagestyle{empty} %\tableofcontents \newpage \pagenumbering{arabic} \pagenumbering{arabic} \setcounter{page}{2} \tableofcontents % \clearpage % \thispagestyle{empty} %\mbox{}\clearpage \chapter{Talk 1: Insert title} \begin{centering} \large{\textbf{By insert name }}\\ \end{centering} \hspace{1cm} %XXXXXXXXX %XXXXXXXXXXX For this introduction we will use the original paper of \cite{CKNpaper} and the excellent book \cite{JamesJoseBook}. The three-dimensional Navier-Stokes equations are \begin{align} \begin{split} \label{eq:NSE} \partial_t u(x,t)+ (u\cdot \nabla )u(x,t)+\nabla p(x,t )-\Delta u(x,t) &= f(x,t)\\ \diverg u(x,t)&=0. \end{split} \end{align} Here, $(x,t)\in \Omega\times[0,T]$, where $\Omega\subset \R^3$ or $\T^3$ or $\R^3$ some domain, and we have the unknown velocity field \begin{equation} u\colon \Omega \times [0,T] \to \R^3; \end{equation} the unknown pressure field \begin{equation} p\colon \Omega \times [0,T] \to \R; \end{equation} and the given force $f\colon \Omega\times[0,T]\to\R^3$ with $\diverg f=0$ in $\Omega\times[0,T]$. Together with initial data and boundary data, \eqref{eq:NSE} turns into an initial boundary value problem \begin{align}\label{eq:InitialBoundary} u(x,0)&= u_0(x), && x\in \Omega,\\ u(x,t)&=0, && x\in \partial\Omega \quad\mathrm{for}\quad 00$. It can be written in components, for $ i= 1, \dots, d$: %\begin{align} %\partial_t u_i + \sum^d_{j=1}u_j\partial_j u_i +\partial_i p &= \nu \sum^d_{j=1} \partial_{x_j}^2 u_i\\ %\sum_{j=1}^d \partial_j u_j&=0. %\end{align} % %The Navier-Stokes Equations (NSE) describe the time evolution of the velocity and pressure of a viscous incompressible fluid (e.g.\ water) without external forces. %%(diagram) \section{Outline: The Navier-Stokes Equations} \subsection{Weak and Strong} \begin{thebibliography}{10} \bibitem[BKM84]{BKMcondition} J.T.~Beale, T.~Kato and A.~Majda. Remarks on the breakdown of smooth solutions for the 3-D Euler equations. \emph{Comm. Math. Phys.}, 1984. \bibitem[Bei95]{BdVnablau} H.~Beir\~ao da Veiga. A new regularity class for the Navier-Stokes equations in $\R^n$. \emph{Chinese Ann. Math. Ser. B.}, 1995. \bibitem[BG02]{BCpressureserrin} L.C.~Berselli and G.P.~Galdi. Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations. \emph{Proc. Amer. Math. Soc.}, 2002. \bibitem[CKN82]{CKNpaper} L.~Caffarelli, R.~Kohn and L.~Nirenberg. Partial regularity of suitable weak solutions of the Navier‐Stokes equations. \emph{Communications on pure and applied mathematics}, 1982. \bibitem[DS10]{Delelissekhidieuler} C.~De Lellis, and L.~Székelyhidi. On admissibility criteria for weak solutions of the Euler equations. \emph{Archive for rational mechanics and analysis}, 1982. \bibitem[FJR72]{FJRpaperserrin} E.B.~Fabes, B.F.~Jones and M.N.~Rivi\`ere. The initial value problem for the Navier-Stokes equations with data in $L^p$. \emph{Arch. Ration. Mech. Anal.}, 1972. \bibitem[FT89]{TemamanalyticNSE} C.~Foias and R.~Temam. Gevrey class regularity for solutions of the Navier-Stokes equations. \emph{J. Funct. Anal.}, 1989. \bibitem[Hop51]{HopfmainNSE} E.~Hopf. \"Uber die Aufgangswertaufgave f\"ur die hydrodynamischen Grundliechungen. \emph{Math. Nachr.}, 1951. \bibitem[Kat84]{Katogradboubd} T.~Kato. Strong $L^p$-solutions of the Navier-Stokes equations in $\R^m$ with applications to weak solutions. \emph{Math. Zeit.}, 1984. \bibitem[KL57]{KisLadsmoothunique} A.A.~Kiselev and O.A.~Ladyzhernskaya. On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. \emph{Izv. Akad.Nauk SSSR. Ser. Mat.}, 1957. \bibitem[Ler34]{LearymainNSE} J.~Leray. Essai sur le mouvement d'un liquide visueux emplissant l'espace. \emph{Acta Math}, 1934. \bibitem[NRS96]{Nescaselfsimilar} J.~Ne{\v{c}}as, M.~R{\.u}{\v{z}}i{\v{c}}ka and V.~{\v{S}}ver{\'a}k. On Leray's self-similar solutions of the Navier-Stokes equations. \emph{Acta Math.}, 1996. \bibitem[Nir59]{Nirenberg} L.~Nirenberg. On elliptic partial differential equations. \emph{Annali della Scuola Normale Superiore di Pisa}, 1959. \bibitem[RRS16]{JamesJoseBook} %RRS J.C.~Robinson, J.L.~Rodrigo and W.~Sadowski. The Three-Dimensional Navier–Stokes Equations: Classical Theory. \emph{Cambridge University Press.}, 2016. \bibitem[Sch76]{Scheffersingulartimes} V.~Scheffer. Turbulence and Hausdorff dimension. \emph{In Turbulence and Navier-Stokes equations, Orsay 1975} Springer lecture Notes in Mathematics \textbf{565}, 1976. \bibitem[Sch87]{SchefferHaudroffnearlyone} V.~Scheffer. Nearly one dimensional singularities of solutions to the Navier-Stokes inequality. \emph{Communications in Mathematical Physics}, 1987. \bibitem[Sch93]{Scheffercopacteuler} V.~Scheffer. An inviscid flow with compact support in space-time . \emph{J. Geom. Anal.} 1993. \bibitem[Ser62]{Serrininteriorcondition} J.~Serrin. On the interior regularity of weak solutions for the Navier-Stokes equations. \emph{Arch. Ration. Mech. Anal.}, 1962. \bibitem[Ser63]{Serrinweakstong} %Serrin J.~Serrin. The initial value problem for the Navier-Stokes equations. \emph{In Nonlinear Problems (Proc. Sympos., Madison, Wis.)}, 1963. \bibitem[SvW86]{SohrWahlpressure} H~Sohr and W.~von~Wahl. On the regularity of the pressure of weak solutions of Navier-Stokes equations. \emph{Archiv der Mathematik}, 1986. \bibitem[Ste70]{Stein} E.~M.~Stein. Singular Integrals and Differentiability Properties of Functions. \emph{Princeton University Press}, 1970. \bibitem[Str88]{Strueserrinimprovemet} M.~Struwe. On partial regularity results for the Navier‐Stokes equations. \emph{Communications on Pure and Applied Mathematics}, 1988. \bibitem[Tak90]{Takahserrinimprovemet} S.~Takahashi. On interior regularity criteria for weak solutions of the Navier-Stokes equations. \emph{Manuscripta Mathematica}, 1990. \bibitem[Tem79]{Tem} R.~Temam. Navier-Stokes equations. Theory and numerical analysis. Revised edition. Studies in Mathematics and its Applications, 2. \emph{North-Holland Publishing Co., Amsterdam-New York}, 1979. \bibitem[Wie11]{Emileulerinfinesol} E.~Wiedemann. Existence of weak solutions for the incompressible Euler equations. \emph{In Annales de l'Institut Henri Poincare (C) Non Linear Analysis}, 2011. \end{thebibliography} \end{document}