\documentclass[fleqn,reqno,11pt,a4paper, openany]{amsbook} \usepackage{amssymb, amsmath, amsthm} \usepackage[a4paper,left=30mm,right=30mm,top=30mm,bottom=30mm,marginpar=20mm]{geometry} \usepackage{mathtools} \mathtoolsset{showonlyrefs}% Only references lables that are then used. No need for equation* for example. \usepackage{MnSymbol} \usepackage{esint} \usepackage{wasysym} \usepackage{graphicx} \usepackage{color} \usepackage{epsfig} \usepackage{cite} \usepackage{url} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=black, citecolor=black, urlcolor=black]{hyperref} %\usepackage[utf8]{inputenc} % this is needed for umlauts %\usepackage[ngerman]{babel} % this is needed for umlauts %\usepackage[iso-8859-7]{inputenc} \usepackage[T1]{fontenc} %\newcommand{\textgreek}[1]{\begingroup\fontencoding{LGR}\selectfont#1\endgroup} %\setcounter{chapter}{4} \numberwithin{equation}{chapter} \numberwithin{section}{chapter} \numberwithin{subsection}{section} % ---------------------------------------------------------------- \vfuzz2pt % Don't report over-full v-boxes if over-edge is small \hfuzz2pt % Don't report over-full h-boxes if over-edge is small % THEOREMS ------------------------------------------------------- \theoremstyle{plain} \newtheorem{thm}{Theorem}[chapter] \newtheorem{cor}[thm]{Corollary} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{claim}[thm]{Claim} \theoremstyle{definition} \newtheorem{defn}[thm]{Definition} \theoremstyle{remark} \newtheorem{rem}[thm]{Remark} \newtheorem{satz}[thm]{Satz} \newtheorem{kor}[thm]{Korollar} \newtheorem{bem}[thm]{Bemerkung} %\newtheorem*{beisp*}{Beispiel}[chapter] \newtheorem{beisp}[thm]{Beispiel} \newcommand{\at}{\makeatletter @\makeatother} % MATH ----------------------------------------------------------- %\newcommand*{\spir}[1]{\raisebox{2.5ex}{\scalebox{1}[-1]{`}}#1} \newcommand{\norm}[1]{\left\Vert#1\right\Vert} \newcommand{\abs}[1]{\left\vert#1\right\vert} \newcommand{\set}[1]{\left\{#1\right\}} \newcommand{\R}{\mathbb R} \newcommand{\K}{\mathbb K} \newcommand{\N}{\mathbb N} \newcommand{\Q}{\mathbb Q} \newcommand{\C}{\mathbb C} \newcommand{\s}{\mathbb S} \newcommand{\B}{\mathbb B} \newcommand{\Z}{\mathbb Z} \newcommand{\T}{\mathbb T} \newcommand{\e}{\mathrm e} \newcommand{\ii}{\mathrm i} \newcommand{\eps}{\varepsilon} \newcommand{\To}{\longrightarrow} \newcommand{\BX}{\mathbf{B}(X)} \newcommand{\A}{\mathcal{A}} \newcommand{\proofstep}[1]{\textit{#1}} \newcommand{\diverg}{\operatorname{div}} \newcommand{\rot}{\operatorname{rot}} \newcommand{\curl}{\operatorname{curl}} \newcommand{\modu}{\operatorname{mod}} \newcommand{\dd}{\;\mathrm{d}} % ---------------------------------------------------------------- \begin{document} %\selectlanguage{ngerman} %\bibliographystyle{plain} \title[CKN]{Navier-Stokes Seminar: Caffarelli-Kohn-Nirenberg Theory} \author{} \thispagestyle{empty} \begin{center} \huge{\bf Navier-Stokes Seminar: Caffarelli-Kohn-Nirenberg Theory}\\ \vspace{1cm} \huge{{(insert name here)}}\\ Universit\"at Ulm, Summer 2019\\ \vspace{1cm} %\huge{Version as of 13/02/2019} \\ \end{center} %\newpage %\maketitle %\frontmatter %\mainmatter \chapter*{Preface} These are lecture notes geberated by the seminar course on the Caffarelli-Kohn-Nirenberg Theory for the Navier-Stokes equations at the Universit\"at Ulm in the summer term of 2019. We mainly follow the \cite{CKNpaper} in a modern fashion. This work is aimed at enthusiastic Masters and PhD students. %Except for the first and the last chapter, the notes follow the excellent recent textbook~\cite{RRS}. Students are encouraged to consult further literature, such as the classical books~\cite{CF, Tem, lions}. %Except for the very end of the course, I chose to work exclusively on the three-dimensional torus such as to simplify the presentation. However all mentioned results from the first four chapters have a straightforward extension to the whole space $\R^3$, or to (sufficiently regular) bounded domains, which certainly represent the physically most relevant case. I would like to thank everyone taking the seminar for typing parts of these notes. Corrections and suggestions should be sent to \verb+jack.skipper@uni-ulm.de+. %\item Anschließend an die vorige Bemerkung ergibt sich aus Tippfehlern im Skript für Sie kein Anspruch, denselben Fehler Ihrerseits machen zu dürfen, z.B.~in einer Klausur.%\footnote{Quod licet Iovi, non licet bovi.} \thispagestyle{empty} %\tableofcontents \newpage \pagenumbering{arabic} \pagenumbering{arabic} \setcounter{page}{2} \tableofcontents % \clearpage % \thispagestyle{empty} %\mbox{}\clearpage \chapter{Talk 1: Introduction} The Navier-Stokes equations are \begin{align} \partial_t u(x,t)+ (u\cdot \nabla )u(x,t)+\nabla p(x,t )&=\nu \Delta u(x,t)\\ \diverg u(x,t)&=0. \end{align} Here, $(x,t)\in \Omega\times[0,T]$, where $\Omega\subset \R^d$ some domain, and we have the unknown velocity field \begin{equation} u\colon\quad \Omega \times [0,T] \to \R^d; \end{equation} the unknown pressure field \begin{equation} p\colon \quad\Omega \times [0,T] \to \R; \end{equation} and the given constant viscosity $\nu>0$. It can be written in components, for $ i= 1, \dots, d$: \begin{align} \partial_t u_i + \sum^d_{j=1}u_j\partial_j u_i +\partial_i p &= \nu \sum^d_{j=1} \partial_{x_j}^2 u_i\\ \sum_{j=1}^d \partial_j u_j&=0. \end{align} The Navier-Stokes Equations (NSE) describe the time evolution of the velocity and pressure of a viscous incompressible fluid (e.g.\ water) without external forces. %(diagram) \section{topic} \begin{thebibliography}{10} %Caffarelli, L., Kohn, R., & Nirenberg, L. (1982). Partial regularity of suitable weak solutions of the Navier‐Stokes equations. Communications on pure and applied mathematics, 35(6), 771-831. \bibitem{CKNpaper} L.~Caffarelli, R.~Kohn and L.~Nirenberg. Partial regularity of suitable weak solutions of the Navier‐Stokes equations. \emph{Communications on pure and applied mathematics}, 1982. % %\bibitem{CF} %P.~Constantin and C.~Foias. Navier-Stokes equations. \emph{University of Chicago Press}, 1988. % %\bibitem{kato} %T.~Kato. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. Seminar on nonlinear partial differential equations. \emph{Springer, New York, NY}, 1984. % %\bibitem{lions} %P.-L.~Lions. Mathematical topics in fluid mechanics. Vol.\ 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, 3. \emph{Oxford Science Publications. The Clarendon Press, Oxford University Press, New York}, 1996. % %\bibitem{RRS} %J.~C.~Robinson, J.~L.~Rodrigo, and W.~Sadowski. The Three-Dimensional Navier–Stokes equations: Classical theory. Cambridge Studies in Advanced Mathematics, Vol.~157. \emph{Cambridge University Press}, 2016. % %\bibitem{Tem} %R.~Temam. Navier-Stokes equations. Theory and numerical analysis. Revised edition. Studies in Mathematics and its Applications, 2. \emph{North-Holland Publishing Co., Amsterdam-New York}, 1979. %\bibitem{amann} %H.~\textsc{Amann} und J.~\textsc{Escher}. %\newblock{Analysis I}. Grundstudium Mathematik. {\em Birkhäuser Verlag, Basel,} 2.~Aufl.~2002. % %\bibitem{cantor} %G.~\textsc{Cantor}. %\newblock Beiträge zur Begründung einer transfiniten Mengenlehre. %\newblock {\em Math. Ann.} {\bf 46} (1895), Nr.~4, 481--512. % %\bibitem{courant} %R.~\textsc{Courant} und H.~\textsc{Robbins}. %\newblock What is mathematics? An elementary approach to ideas and methods. Bearb.\ v.\ I.~\textsc{Stewart}. {\em Oxford Univ. Press, New York,} 2.~Aufl.~1996. % %\bibitem{deiser} %O.~\textsc{Deiser}. %\newblock Einführung in die Mengenlehre. Die Mengenlehre Georg Cantors und ihre Axiomatisierung durch Ernst Zermelo. Springer-Lehrbuch. {\em Springer-Verlag, Berlin/Heidelberg,} 3.~Aufl.~2010. % %\bibitem{ebbinghaus} %H.-D.~\textsc{Ebbinghaus}, J.~\textsc{Flum} und W.~\textsc{Thomas}. %\newblock Einführung in die mathematische Logik. Springer Spektrum. {\em Springer-Verlag, Berlin/Heidelberg,} 6.~Aufl.~2018. % %\bibitem{forster} %O.~\textsc{Forster}. %\newblock Analysis 1. Differential- und Integralrechnung einer Veränderlichen. Grundkurs Mathematik. {\em Vieweg + Teubner, Wiesbaden,} 10.~Aufl.~2011. % %\bibitem{gowers} %T.~\textsc{Gowers}. %Mathematics: a very short introduction (= Very short introductions {\bf 66}). {\em Oxford Univ. Press, Oxford,} 2002. % %\bibitem{wilholt} %T.~\textsc{Wilholt}. %\newblock Logik und Argumentation. Materialien zu einführenden Vorlesungen über formale Logik und Argumentationstheorie. %\verb+http://www.philos.uni-hannover.de/fileadmin/+ % %\verb+institut_fuer_philosophie/Personen/Wilholt/Logik.pdf+, % %letzter Aufruf am 7.10.2018. % \end{thebibliography} \end{document}