Îçҹ̽»¨

Dr. Manfred Sauter

Please note that there is additional information on .

Research interests
  • Elliptic operators and form methods
  • Spectral theory
  • Irregular domains and trace theorems
  • Operator theory

My research profiles:  |  |  | 

More recently

  • WS 2024/25: Mathematics III (for Physics, Electrical/Chemical Engineering, Computational Science and Engineering)
  • SS 2024: Mathematics II (for Physics, Electrical/Chemical Engineering, Computational Science and Engineering)
  • SS 2024: Elements of Complex Analysis
  • WS 2023/24: Mathematics I (for Physics, Electrical/Chemical Engineering, Computational Science and Engineering)
  • SS 2023: Linear Algebra I
  • SS 2023: Introduction to Geometric Analysis (Bachelor's & Master's Analysis seminar)

Other

Publications

  • W. Arendt, M. Sauter: Maximal regularity for generalized boundary conditions in time, preprint 2025.
    ()
  • W. Arendt, A.F.M. ter Elst, M. Sauter: The Perron solution for elliptic equations without the maximum principle, Math. Ann. 390, 763–810 (2024).
    (, )
  • W. Arendt, M. Sauter: The Wentzell Laplacian via forms and the approximative trace, Discrete Contin. Dyn. Syst. Ser. S17 (2024), no. 5-6, 1750–1765.
    (, )
  • W. Arendt, A.F.M. ter Elst, M. Sauter: Nittka's invariance criterion and Hilbert space valued parabolic equations in Lₚ, Arch. Math. (Basel) 121 (2023), no. 5-6, 731–744.
    (, )
  • M. Sauter: Uniqueness of the approximative trace, Indiana Univ. Math. J. 69 (2020), no. 1, pp. 171–204.
    (, )
  • A.F.M. ter Elst, M. Sauter: Nonseparability and von Neumann's theorem for domains of unbounded operators, J. Operator Theory 75 (2016), no. 2, 367–386.
    (, )
  • A.F.M. ter Elst, M. Sauter, H. Vogt: A generalisation of the form method for accretive forms and operators, J. Funct. Anal. 269 (2015), no. 3, 705–744.
    (, )
  • W. Arendt, A.F.M. ter Elst, J.B. Kennedy, M. Sauter: The Dirichlet-to-Neumann operator via hidden compactness, J. Funct. Anal. 266 (2014), no. 3, 1757–1786.
    (, )
  • M. Sauter: Degenerate elliptic operators with boundary conditions via form methods, PhD dissertation (The University of Auckland), 2013.
    ( Open Access)
  • A.F.M. ter Elst, M. Sauter: The regular part of second-order differential sectorial forms with lower-order terms, J. Evol. Equ. 13 (2013), no. 4, 737–749.
    (, )
  • A.F.M. ter Elst, M. Sauter, J. Zemánek: Generation and commutation properties of the Volterra operator, Arch. Math. (Basel) 99 (2012), no. 5, 467–479.
    (, )
  • A.F.M. ter Elst, M. Sauter: The regular part of sectorial forms, J. Evol. Equ. 11 (2011), no. 4, 907–924.
    (, )
  • D. Kunszenti-Kovács, R. Nittka, M. Sauter: On the limits of Cesàro means of polynomial powers, Math. Z. 268 (2011), no. 3-4, 771–776.
    (, )
  • R. Nittka, M. Sauter: , Electron. J. Diff. Eqns., Vol. 2008(2008), no. 42, pp. 1–31.
    ()
  • M. Sauter: Minimality of the first Eigenvalue of the Laplacian in Dependence of the Domain, Diploma thesis (Îçҹ̽»¨), 2008.

Dr. Manfred Sauter

________Manfred Sauter________
_________
__________Dr.__________Manfred__________Sauter_________
________
_______
____________
________
___

Office hours: on appointment

__
___
___
____
__
Institute of Applied Analysis
__Îçҹ̽»¨
_____
____89069____Ulm___
______
Germany
_
__
_____
Room: Helmholtzstraße 18 2.06