Dr. Maximilian Fürst
Postadresse:
Universität Ulm
Institut für Optimierung und Operations Research
89081 Ulm
µþü°ù´Ç:
Helmholtzstr. 18 / Raum 1.48
Telefon: 0731 / 50-23635
Sprechstunde: Nach Vereinbarung
Email: Mail
Lehre
Wintersemester 2019/2020
Sommersemester 2019
Sommersemester 2018
Wintersemester 2017/18
Forschung
- With J. Baste and D. Rautenbach: Acyclic matching in graphs of bounded maximum degree
- With J. Baste, M.A. Henning, E. Mohr, and D. Rautenbach: Domination versus edge domination
- With J. Baste, M.A. Henning, E. Mohr, and D. Rautenbach: Bounding and approximating minimum maximal matchings in regular graphs
- On the hardness of deciding the equality of the induced and the uniquely restricted matching number, Information Processing Letters 147 (2019) 77-81
- With J. Baste and D. Rautenbach: Linear programming based approximation for unweighted induced matchings --- breaking the $\Delta$ barrier
- With D. Rautenbach: Uniquely restricted matchings in subcubic graphs without short cycles
- With D. Rautenbach: On the equality of the induced matching number and the uniquely restricted matching number for subcubic graphs, Theoretical Computer Science 804 (2020) 126-138
- With M.A. Henning and D. Rautenbach: Uniquely restricted matchings in subcubic graphs, Discrete Applied Mathematics 262 (2019) 189-194
- With D. Rautenbach: Lower bounds on the uniquely restricted matching number, Graphs and Combinatorics 35 (2019) 353-361
- With S. Chaplick, F. Maffray, and D. Rautenbach: On some Graphs with a Unique Perfect Matching, Information Processing Letters 139 (2018) 60-63
- With D. Rautenbach: A lower bound on the acyclic matching number of subcubic graphs, Discrete Mathematics 341 (2018) 2353-2358
- With D. Rautenbach: On some hard and some tractable cases of the maximum acyclic matching problem, Annals of Operations Research 279 (2019) 291–300
- With M. Leichter and D. Rautenbach: Locally Searching for Large Induced Matchings, Theoretical Computer Science 720 (2018) 64-72
- With D. Rautenbach: A Short Proof for a Lower Bound on the Zero Forcing Number, Discussiones Mathematicae Graph Theory 40 (2020) 355-360
- With M. Gentner, M.A. Henning, S. Jäger, and D. Rautenbach: Equating $k$ Maximum Degrees in Graphs without Short Cycles, to appear in Discussiones Mathematicae Graph Theory
Theses
- , PhD thesis (2019)